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THEORY Ol?HEAT TRANSFER IN SMOOTH AND ROUGH PIH!!S’~
.

By G. D. Mattioli

&

BASIC CONSIDERATIONS OF FRICTION TURBULENCE

Heat transfer’ theory in the turbulent region follows
from the theory of turbulence described in a book by the
author (reference 1). Prandtl (reference 2) postulates
momentum transfer, Taylor postulates vorticity transfer,
while Ilattioli postulates both.

Prandtlls attack was based on the foundations of ki-
netic theory; the momentum transfer hy the mOleCUlf3S eX-

plained the viscosity. But a large difference exists be-
tween molecular and turbulent motions. The molecules are
small and their linear momentum is sufficient to explain
their behavior, while the elementary units which partake
of turbulent motion are large, and both their linear and
angular momentum must” be considered.

In the turbulent regime, the elementary units (which
are not separated) will be considered as soparato enti-
ties from a dynamical point of view. The momentum (per
unit volume) p v (p = mass densitY, v = velocity-vector)
must be augmented by the unit angul,ar momentum p Id UJ,
where UI = rot v, which describes the vorticity of tho
mean motion, and t is a length which has been introduced
on dimensional grounds..

Across each surface in the turbulent regime both lin-
ear momentum and angular momentum are trnnsforrcd, ?nd
each exchange is dynamically equal’ to a fraction of the
innf3r stresses. /

t

Let x coincide with the t~%’~ a~is; u is the vcl~ci-
ty in the positive x-direction, r the radius from tho tube
axis, c the eddy diffusivity, p the mass density; then

pc~ is the momentum tr?nsfer pcr unit ~rca and tiinc in

.—.—-—.———— .—.,
*lfTheorie der ~Frmefibertragung in glattcn und rauhcn l?ohren.”

Forschung auf dcm Gcbicte dcs Ingcnicurwcscns, Bd. 11,
no . 4, July-August 1940, Pp. 149-158.
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the radial direction. .Thi.stransfer “is equal to the tan-
gential shear*

..
‘rx .-p ~ ~(kg/m2) (1)

Since the vorticity transfer of each element of mass does
not vary, the corresponding stress tensor is symmetrical;
thst iS, Trx = Txr. Trx is the x component of the

stress, which acts on the element in a ?.irection perpendic-
ular to-the r-axis. If ‘rr = ‘xx = o, then the tensor

is completely defined. The equation

duu.)..—
dr (2)

is the vorticity of the mean motion. In view of the defi-
nition of c, the difference between the vorticity trans-
fer per unit time in th~ positive and negative directions
of r is 2mr p cd(l W)/dr, a,nd

is the rate of increase of the vorticity between the radius
r and r + dr. On a unit volume basis

(3)

iS the incre~as’e of vorticity per unit volume in a un”it time.
In the steady state the density of vorticity m’ust be con-
served. On the surface of each volume- element AV stresses
must exist which cause a moment about the center of the el-
ement of . - l.!A v ~vhich destroys the point-to-point Vari-

ation of ‘the vorticity. About the axis of rotation of the
element which coincides with the direction of the vortices,
conditions are symr,etrical; therefore, it is natural to
postulate that arr’ ‘rx’ etc., the components of the stress

““tensor are:

~xx = arr = o; ‘rx = - axr = 14/2

This tensor is antisyrnmetrlcal. !l!l~eviscosity generates
inner forces, the corresponding tensor being:——.

*%l.X denotes the x-component of the internal pressure act-
ing on the surface element at right angles to the r-axis.
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Vxx = Vrr = (); Vrx = ‘xr .pv~
.. .,

where v is the-kinematic viscosity. The components of
the total stress tensor ‘then are:

m

t Tx.x = xx -1- CJxx + bxx = o~ trr * o; txr = p(~+u) *

Mt.-.
2’ ‘x

=p(c+v)Q+:
dr

,, (4)

If p = constant
q . ~on~tant

and , then
ax

1 d(r trx) dp
— = constant (5)
r dr ‘z

for equilibrium on the element r to r + dr, of length
ax. From these equations follow the equations of motion.

Employing equation (4):

1 dp
and integrating, letting – — = - ~;

p dx

(5)

(7)

For r=O, “the unit shear (left side of equation) is
eqtial to zero, while on the wall (r = R) , the unit sh.car

(Toj becomes pa:.

The variablo v*
‘m=E

is called the fric-

tion velocity a,nd can be evaluated at the wall.

A second cqu.ation rasults from tho’postulate which
fixes i? . Sinco tho details of turbulent mixing are not
yet known, a formal hypothesis with respect to M must
suffice : A vortex can be generated only at the wall, for
fluid clcmcnts striking the wall at other than zero tan-
gential velocity ~ild sticking there must experience a de-
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formation which will cause an.eddyto be generated. This
vorticity generated at the walls must be destroyed in the
interior of t~e fluid hy the moment -M . But what is the
law If ptw is ‘constant in the r-direction, then. M
would necessarily be zero”. One may understandablylet M
be prop.orti-cwal to Walls are not present.d.(p 12 w)/dr. .
as vorticity generators’ in t“h-ecase of free turbulence,
and for this case M = O.

Then for our case -set “\

and, together with equation (3), yields

ld

.[

r ~c d(12w)—— ——
1

= w ‘(~ Q)
r dr dr .,.
., .:..

(9)

Further considerations based on Prandtlls similarity
theorem (in tho neighborhood of the wal~ u/v* =-universal
.f~nction of (R - r)T*:/,v) allow v and 1 to be troatcd
as constants, where” .,

.- “, ..

V2 -
Q=XV*:12.=2PXT*2

, ..
(lo)

. .

and x and P are universal constants of friction-gener-
ated turbulence. x is the K~rm~,n constant = 0.406 based
on measurements of Nikuradse. (See -reference ~.) P is
harder to establish since it depends chiefly on the veloc-
ity .distribut.ion -near the wall. It would appear that
.2.46 < $,< ,3.5. ..

.
THE HYDRODYNAMIC PROBLHM ~

Substitute (8) into (’7) and utilize (10) yielding

(c+v)u’-p~u”=_ ;
V*

.

#

(11)

Integration of equation :(9) yields
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C r u“ =Xv*(ru’-u+K) (12)
..

wkLere K 5.s the integration constant which must be fixed
by experiment. It is the oilly constant still open to ques> ~
tion on theoretical grounds.

The boundary conditions which must %e satisfied upon
the integration of (11) and (12) follow from the Prandtl
similarity tb.eorem.,and it seems natural to assume that %
the total unit shear at the wall depends on the viscosity,

G->“

so that one may set:

u u! = * . V*2 for r = R

The velocity u at r = R rust also be introduced. The
exchange (aust=usch) phenomenon ~t the wall is damped in
such a thin layer that one may SRY that the inner interfnce
of the fluid- at which turbulent motion is just apparent is
Rt r=R. ?rom similarity considerations

U=AVX for r = R

where A is n u.niversa.l dimensionless quantity which de-
pends on ,~. From experiment

A= 8.06 for P = 2.<6

~%nd

A = ‘7.7 for p =5.5

Subject to these boundlry coilditions the integrals of equa-
tions (11) and (12) yield the velocity and eddy diffusiv-
ity distributions.

2Rii
Tor l,arge v=lues of Re = ~ (~ = the mean velocity)

equations (3) and (6) may be integrated by an approximate
procedure, the result being correct for Re+m.

in the laminar sublayer where the velocity changes
appreciably with distn,nce, while the unit shear remains
sensibly constant, r may be replnced by R. Let R - r =
y , the dista,nce from the wall, then
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If v = constant, then 11 = v*y/~ . Since v = F (r)

and if the dots represent derivat ions’ with’re spect to ?l,
equations (11) and (12) become in terms of the generalized
variables Cp(= u+), v (= y+)

[(:’m’+’($-!:)’1; :(+) ‘“x +7+ (K-u)]
For large magnitudes flf Re, (K - u) 4 is small

Rv *

compared with & and for most fluids the influence of v
is small, thus terms “involving these two quantities will
be neglec.te.d.. T.hen,the abqv~ equations .hecome

(14)
and
(15)

which is the same -f-ormas -u = constant.. That is, the in-
fluence of a variable v is limited to the equation (13).

“Integrals ‘of“(l~).,and (15). are fixed by the conditions
at the wall, which in turn represent the momentum transfer
mecb.anism at the wall. The trpnsfer is dissipated in the
ut fiin wall layer~” which is to be thought of separately
from the main stre~,m as the Ilturbulent mixing mechanism” of

the maih stream goes “over Into the pattern at the wall in
this Ilthin layer.” The thickness of this layer is so small
that it may be neglected and the wall process may be
thought o’fas occurring in an interface’. The point y.o
(V = O) is-then the location of this interface (i.e., the
inner surface of the boundary la-yer, where the word “inner’t
means the side toward the center) and the boundary condi-
tions will be so applied to equations (14) and (15).

1 n the case of an isothermal flow the nondimensional dis-
tance from the wall is v = v*y/v . For variable tempera-

ture v varies c~nsiderably near the wall and this must be
taken into account by a suitable expression.
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The mechanism of the process in the boundary layer
,- does not need to be known in detail, but it suffices to

fix the velocity and the velocity gradient at the inner
surface of the %oundary layer. The Prandtl similarity
theorem leads to the statement that

9 =A’and~=l for T=o

I?or A = 8.06 (P = 2.46) or A = 7.7 (for P = 3.5) it
follows from (14) and (15) that

and if u is invariable

dc
()

r= $x =AV*
~ 2~v*y.d

(17)

that is, on the inner surface of the bound~ry layer the
eddy diffusivity is not zero, which follows from the con-
cept of the separate (from the main stream) boun?LR.ry l,ayer.

Eauations (14) and (15) are intc.<rable for f3+o
~nd yi;ld ~ simple intcgr~l which ‘is correct for Re ~m,
if the velocity distribution ~t the intcrfacc botwccn tho
laminar sublaycr and the turbulent strc~m is utilized.
Substituting ~ = O m.nd A = A. = 9.46, thcso intcgrnls
become in parametric form (see reference 1, p. 105):

p=.s= ~ (T -lnT- 1)+ A.
v* x

2-s9?where -r = $ = V* dy and is less thr.n 1 cxcopt at the wrll

Small values of T dcscribc the region ‘in which the
laminar subl-yer transforms into the tui~ulent core. In
this transition layer ca-uation (18) may bc..simplified to
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. .. . Y.. .
. .. . Q J d.y

,— = -~”ln~T+Ao-~v”-V* ‘=$
‘* v.

(19)

e

c
which are asymptotic for Re—-+~- j ;—-+. m in the core

for this case. In this region one may neglect u com-
pared to c, a,nd equations (11) and (12) become

(20)

the integrals of which agree with (19) for y o. The
hydrodynamic part has now been solved. The equations de-
rived agree well with the experimental measurements of
Nikuradse (reference 3) .

Let

a“ thernp.1 diffusivity
.

CP
unit heat cap,acity at constant pressure.

.-.-
?: gp. ~~eight density’

.-. >
a’.: teapernture. -

The enthqlpy per unit volume is w Cn ‘O (k cal/m3) and
.

analogously ~’ith equation (3)

is the increase in heat content per unit time and volume
in annular ring of width dr. If no sources.exist

(21)

where u(r) and c(,r) must be obtained from hydrodynamic
considerations.

Zquat ion (21) m~y le integrated in a manner similar to

I
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that employed for the hydrodynamic considerations. l?br
instance , the rate of heat flow normal to the wall in the
Stiblayer next to the w-all is postulated as constant -
wliich ,is similar to the statement that the unit shear is
constant through the sublayer. Then

.-
., . . ..(<-+a ).=+

. .: P’:

or , changing variables from r to V (equation (13))

(22)

wb.er~ q is the heat rate per unit ~.re~.norma,l to the wall
nc?sured positively in the direction of wall to fluid.

Substituting the new v~riable, T
yields

(
1

)
ad 1

‘- 1 ‘: m= - ~y :P V* ;T

a
For gases ~ = constant, so th~t this

from equation (18)

(+ -1,
(23)

equation is direct-

ly integrable. Por liquids, even though a varies but
little with temperature,. v cannot be considered invari-
able. It is seen that the i“nfiuence of Q (< 0.5) in equa-

V
tion (23) is important only for large values of T, so

that to effect the’ formal ”integration, -~ will be” s-et ea_u~l

()to ; which is representative @f the liquid tempera-

ture $: at the wa31. The integral of equati~n (23) be-

comes equal to *O, for T=l. In general,
.-.

y c-p v*
.-.

($.$.”) .-~@n’~ +2>T - ‘in (pro-(pro-l)T)
)

(24)
q ro

. M cp g 3600 u .
where Pr = ——–— = –

k a

In the turbulent nucle~r flow a, as V, may be neg&
lcctcd vith respect to 6 . Then equation (21) becomes
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(25)

where u(r)- nnd c(r) are ‘fixed by equation (20).

An approximate solution is now sought. The velocity
distribution falls off so rapidly in the laminar sublayer
that U may be held constan~ in the turbulent core and
equal to the mean velocity u. Then may be set

. .
da—= .
ax

n(x)

which is satisfied after the quieting length. Then from
eaua.tion (25) ..

(26)

2)
‘The left side descriles the heat flow throu~h tho wall
(-q) as r R; therefore,

and from equation (26)

,. ad. qr (27)
.%=-.-E

which is id~ntical with equation (20). In the core

v CP.V*.
— (0 - al) = u;*”’ (28)

,. q.
,.

where the subscript 1 refers to any point; that is, the
temperature and velocity profiles are similar in this re-
gion. The temperature al is fixed by”the requirement

that integral equation (28) in the %uffer layer between the
laminar sublayer and the turbulent core must become equal
to equation (24).

2Y~t should be r.oted that “the approximations are also valid
if a is not neglected by comparison with c,
for Re--+.cn

and that
the thickness of the somilaminar boundary

lsyer becom~s Vanishingly small. The abov~ transition to
the limit toward the inner side of the semilqminar boundary
layer is thus ideiltified with r~R.

_-. —-. . . - . .. . . . ,, ,,,, ,,,,,.,,,,,, ,,,.. ... . . . . ..!! . .. —-—— ------------ -,, ,,,,,, .!!!.. !!..!!!
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TEMiWRATURE DISTRIBUTION AT THE WALL

Since the numerical value of ?’ is small in the buf-
fer layer, equation (24) ‘becomes similar to equation (18)
when applied here:

‘Y Cp V*

—— (~.$o).-~~n’r+p l-Lln~ro)
‘1 . . r.

whi ch, when compared with (19), may also be written as

Ycpv
*(8- $o)=~-Ao+~, Lp 1-1 in Pro ) (29)

~ v*
‘o

llquation (28) presents a similar equation for the
turbulent core; therefore, ea-uation (29) yields the tem-
perature distribution in the whole tube with the excep-
tion of a thin boundary layer whose thickness becomes zero
for Re~m. It contains the unknown temperature (80)
of the fluid at the wall, which must be determined by the
raid of thermal conditions at the wall. Referring to the
velocity, the velocity increase is given as AVW, which

occurs in the boundary layer where, for the approximation
that 13=o, A = A. = 9.46. Also, for the temperature a

similar change must occur in the boundary layer. Dimen-
sional considerations lead to the relation (reference 1,

P. 306):

‘g= T90-aw= q
% ~y f(Pr*)

P

(30)

Eere 8W is the wall temperature, A$ is F constant, and

f(Pr*) is a function of ‘Pr which could be evaluated if

the details of the heat transfer at the walls were known,
As it is, it is clear th~t the function must .be computed
for m >.p-propriate mean Pr* for the boundary layer.

llven thcugh the present theory will not allow the de-
termination of f(prx) uniquely, its range may bc csta%-

I.ishcd by moans of a discussion of two limiting conditions
bctwccn which the true function must lie.
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Sny c =. O at the 3nner surface” of the boundary layer;
then there is no mixing of the fluid in the boundary layer
with that of the outer region (the core) and the heat trans-
fer must be by.ppze conduction. Then .‘ ....

where 6 is the thickness of.the boundary layer. In the
region” near the wa-ll v /v* is the significant length;

therefore a likely relation is,
..

“.-

from” which th”ere”follows:

,-

By’comparison with (30), f(Pr) =

(31)

In acco~d~nce With .equatian :(16)” ~~y=d is not zero;

that is, there is turbulent transfer from the inner side
of .,theboundary layer which results in th6-introduction of
new fluid at this interfa-ce. This fluid stream perpendic-
ular ‘to the interface is pr~.portional (+eference Z, p-.”20)
to dc/dy - which, at y = O, is

..
dc
G ~=o

=AV* (32)

so-that the quotient of the thickness A ~ of the bound-

ary layer and the magnitude of equation (32) gives the
mean, time which a fluid element spends in the boundary
l~yer:

T = AA . Av* = B2~
V* V*2

(33)

Tlie transient heating of the fluid element (which is being
renewed from the main stream) by conduction for a length
cf time T under temperature difference 6 at time t=o
is given “by the equation (reference 4):
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‘=H’+”(JJ) (34)

a?) 8*
A solution of

z=ag
which meet s the bound el’y

conditions where v is the Gaussian function

x

-1‘(x)‘: o ‘-X2‘x
-0

From equation (34) the q~~antity of heat which flows
to the fluid particles per unit wall-surface area is

T

.Q=f Ycpa(Ql) /@dt=Ocp

o
y=o

or the average heat rate is

so that

6=Adq r Pr
YCV*

??

and by comparison with equation (3CI)

f(P~) .JP;

These calculations are qualitative, but they lead to
a likely supposition that

f(Pr) = Prm where ~<m<l (35)

The problem of determining the mean Pr* is yet open.

One could set pr * = .(l?rw+ pro)/2, the mean at the wall

and on the inner surface of the boundary layer (inner al-
ways means toward the wall center) , but the logarithmic
mean seems more basic.
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In the vicinity ~f. the wall

Y

J dy
v = V* 7 = v* y(l/v)

.
0

11 ~ky
~nd if =—

~ Vlfl (which is a likely supposition), then

1 1—.—
V* Vw

l/1) =
% - Vo=

Vwin —
V. VWVO in #

o

1
.

Since — = ~ vsries with
Pr l/u mostly, approximate-

ly there nay %e writt;n

()
P -1?
rw

l/pr* = $ . —.._
ro
pr~r

Prw?ro in —
Pro

(36)

for the value to be used in f(pr*).

THY HEAT TRANSFER EQUATION

Referring to equations (29) and (30), there results
upon summntion, using the theorem expressed by equation
(35):

The constant Ad is yet to be determined. d~perience
teaches (reference 5) that for Pr = const X 1 (gases)
the (* - dw)-curves and the u-curves coincide upon appro-

priate change of scale - which result is accomplished an-
alytically by placing”

Ad= Lo = 9.46
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in equatiofi (37). On the 6ther hand, if this const~.nt is
>. -to have univef,sal~ significance ,., it must hold for all val-

ues of Pr ; if such is the case,

Y Cp v*
(d-dw) = ~ + Ao(pr*m-l) + ~ (I - & in Pro)

~ ‘o.
(38)

obtaining the mean over the cross section

2

()

‘* ,

q 7i-
= ——

‘YC ~ im-aw)
r

1 (
l+~’ll~(~rm-l)+~ 1-

1
In Pr

* x Pro-l o)]

which is the eouation for ~ Pr. Substituting A. = 9.46,

X.= 0.406, and

yields the expression for heat transfer ‘

c= q

Yc i (: - dw)
“!

P

A/8
=

[[

(39)

l+A
(

9.46(Pr*m-1) +-2.46 1 - p l_l in pro
zi- ro )]

where A is given by (reference 1, p. 133):

1—=

J
2.005 log Re P - 0.806 -

x

an eciuation which is in agreement with the results of
Nikuradse (reference 3) on smooth pipes.

‘(40)

It is not known how to compute Re in equation (40)
for nonisothermal flow. The influence of viscosity is
limited to the laminar sublayeq on the wall side of which
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the eddy diffusivity c is, by equation (16), of the order
of magnitude of u. Sirice 6 iricreases ’greatly with y
as one proceeds from the wall, and sinbe “ c.’+ u is the com-
bined Ilaustauschi’ coefficient, it is clear that the value

Vo on the wall side of the boundary layer will fix the re-

Sj.stance tO flOW. Until better data are available, it will
suffice to set

2R:
Re = Reo = –~

o

into eahuation (40) , Utilizing

III = 0.77 (41)

eouation (39) holds well for heating and cooling.

Actually, equation (S9) contains properties which
are not known as the result of experiment; for instance,
Pro and Vo, which are fixed by the temperature of the

subl.ayer on the wall side V. which can be fixed by know-
ing the rate of heat transfer. For fair values of
Prandtlls modulus, or for small temperature differences

ho = $, since for sufficiently large magnitudes of pr

Elost of the temperature drop will occur in the sublayer.
For small pr (< 0.5), or for large temperature differ-

ences, ane may employ equation (39) and the method of
successive approximations (two will suffjce) . One deter-
mines an approximate q. setting do = J (mean) in the
following equation and in equation (36):

q.
f3 $0 - ~lti = 9.46= Pr*m

Y Cp V*
.

(42)

I/ith those a.pproxirnate properties, the calculation is rc-
pon.ted, using equations (39) and (40)”. Finally, the men.n
temperature across the section f in area is: ..

. .

,, ,

while the mixed “mean 31 is usually’”me~sured ‘ ‘ ‘ .
;‘: .
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Based on the mixed mean (reference 1,, pp. 129*133): ,

+ Ao(pr* (%1)+;1-1
P=o-l )

in Pro “

,-
where z is the mean velocity across the section. Then

“-.

A/8,.=

[[

(43)
A

1+10.6 ;+ ~
(

9.46(Pr*m~-1 )+2.46 1- p
1

in Pro
r.-1 )]

APPROXIMATE EXPRESSIONS FOR PRACTICAL USE

For numerical work, the Blasius expression iS useful:

A
= 0,0396 Re-0”25

K (44)

whic”h holds well up to Re % 106.

When Pr is approximately unity, one may derive

i,rm- 1
1 Pr-1

~ m (Pr-l); 1 - in Pr =
Pr-1. 2

For m“= 0.77 ,~.ndfor small temperature differences. .

“Nu= 0.0396 Re~0”25

“Re Pr 1 + 1.69 Re–0”125 (Pr-l)
.,

(45”)

which agrees well with Pr?ndtl except that he obtain’s 1.74
for ‘the coefficient instead’of 1.69. For m = 0.79, ?grse-
ment is perfect. The problem of more accurately determining

—
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m, natur=.lly -is” open.. I
1

Tor large madnitud,es of P~ , the term In Pr
PrL1.

may be neglected. In general, one must” solve the equation:

e= Yu
Re P= .“

0.0396 Reo–o”25
=

‘0.125 r .
1+0.199 Reo

1
9.46(pr

(
0“77.-1)+2.46 1-- 1 in Pro

Pro-l )]

(46)
Kraussold (reference 6) has proposed an empirical ex-
pression:

Nu = 0.024 Re–0.2 Pr-n (47)
Re Pr

vii~re n s 0.63 for besting, and n = 0.7 for cooling.
It is not uninteresting to compare the two formulas. (See
the following table.) The right side of equation (46) is
computed for- Prk = ~ro, . which will hold for small temper-

ature differences.

..
,—
I I

. . Nu/[Re Pr)

i pr ~
——-

Ilouation (47)
3quation (46) ~ Heating Cooling

I n = 0.63I .

~~~~~ 1

I
I

:~~~
It is seen that for large I’r the results from equation
(46) lie between those for heatitig and cooling,

To illustrate t’he method of carrying out the computa-
tions, we will now compute the unit conductance for water
corresponding to a mean temperature of 50° C, a mean veloc.
ity of.100 centimeters ’per second through a tube of 3 cen-
timeters diameter for a’wall temperature of 100° C.
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AS a first approximation, we will choose the proper-
. ties fbr d =’50°; V. = 0.00562 cm2/sec., Pro k 3.58.

For t = 100° C, %~ = 1.72, then pr* = 2.43 and

Roo = 53,400. Fio~ equ-ation (46), C = p.001696, and from

Therefore, do = 69° C.eauation (’42), ~w’-”~o = 31°. ‘ ‘. “

The prop:rtios Corresponding to the second approxima-
tion are: Vo. =’ 0,00419, Pro.=. 2.5?; P~w”= 1,72.

pr* = 2.09, Reo’= 71,600, and from (46)

c
Q.

= = 0,001724
Y C* : (3 - dw)

For y = 988 kg/ins, CD = ().998 kcal/kgO C:

qv = 3600x0 .0G172’lxlx988xcJ. 998
a = *–dw

= 6120 kcal/m2ho C

ROUGH TUBES

Tubes mny be thought of as completely rough if
v*ik
—~ 10’0 (references 1 ~nd i’). Actually, values of
v
over 60 will satisfy the requirement. k is the mean
height of the wall asperities; still better is the equival-
ent height of sand roughness. In this case, the resist-
O.nce equation is quadratic where

2.005 log ;
&=

+ 1.73 (48)
. . ..- .

This equation has been est,?bl.ished by. oxperimo~nt ~,nd was
derived by the nuthor “on the ass~.i~~tion that the boundary-
laycr thickness (in- whioh th~ wa”ll tr”~nsf”er mechanism trans-
pires) is equal to k. Applying this postul.atg. to tho ther-
mal problem in ,5manner s#milir to that olta,incd for n “
smooth tube yields

e i ~xk

f

‘ v*k
= & y ~p V* ‘r and. A ““ q

r’Ycv*
-

P a

whero the mean time of repose of the fluid particlo in the

. ....... . .. ... . . . ... .. . . .. ..-- —-—. ———
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boundary layer is now proportional to k/v* . On the same
basis as was used previously: - ““

n

b do-$w=Arycq (~);~<n<l= (49)v*
P

Nor a completely rough wall, the kinematic viscosity v and
the thermal diffusivity a may bo neglected throughout the
whole tube, ~nd in place of equation (29) , the following is
obtained:

Y Cp V*

(6 -40)=$-A
c!

(50)

where A = 7.7 for B = 3.5 yields the best fit (reference
1, p. .277).

From equations (49) and (50), it follows that

(51)

Aver.?.gins (not mixed Dean) over the cross section, ,qnd in-
troducin~ the function factor yields

m L~l~ere ~re no d-t=. as yet ngainst which this expression can
he checked. Pohlts (reference 8 ) aea,surec~ents extend

kv *
only to —.1’ as the fornulc. demands, while equation

kv *
(5?) is go~d only for ~ > 60. But fron these measure-

ments, it is safe to stnte that th-e term in square brackets
in the denomination of the right side increases with in-

kv *
creqse

-Z- as the fornuln dera~.nds, while it is independ-

ent thereof in smooth tubes. (See equation (39). )
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SUMMARY .-
. .

The heat transfer accompanying turbulent. flow in tubes
ha,s been treated by a new theory of wall turbulence, ,and a
formula for smooth tubes has been derived (equation (39))
which is asymptotic at Re~~. It agrees very well with
the d~ta ~vailable to dnte. The formula also holds for the
flow along a flat plate if A is based on the velocity far
aaw~y . For rough tubes, the unit conductance is shown to be
a function of kv*/v; the two enpirical constants (Ar, n)
which appear in equ~tion (52) cannot yet be determined be-
cause of lack of experimental data.

2Tr~nsl~.tion by L. M. K. Boclter.
University of California,

Berkeley, C~lif.
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